Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.764
Filtrar
1.
J Biol Chem ; 299(9): 105100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507019

RESUMO

In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , RNA Nucleotidiltransferases , Humanos , Íntrons , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Splicing de RNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Enzimática/genética , Domínios Proteicos , Ligação Proteica , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Metais Pesados/metabolismo
2.
Plant Physiol ; 193(1): 271-290, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37177985

RESUMO

Viral RNAs can be uridylated in eukaryotic hosts. However, our knowledge of uridylation patterns and roles remains rudimentary for phytoviruses. Here, we report global 3' terminal RNA uridylation profiles for representatives of the main families of positive single-stranded RNA phytoviruses. We detected uridylation in all 47 viral RNAs investigated here, revealing its prevalence. Yet, uridylation levels of viral RNAs varied from 0.2% to 90%. Unexpectedly, most poly(A) tails of grapevine fanleaf virus (GFLV) RNAs, including encapsidated tails, were strictly monouridylated, which corresponds to an unidentified type of viral genomic RNA extremity. This monouridylation appears beneficial for GFLV because it became dominant when plants were infected with nonuridylated GFLV transcripts. We found that GFLV RNA monouridylation is independent of the known terminal uridylyltransferases (TUTases) HEN1 SUPPRESSOR 1 (HESO1) and UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) in Arabidopsis (Arabidopsis thaliana). By contrast, both TUTases can uridylate other viral RNAs like turnip crinkle virus (TCV) and turnip mosaic virus (TuMV) RNAs. Interestingly, TCV and TuMV degradation intermediates were differentially uridylated by HESO1 and URT1. Although the lack of both TUTases did not prevent viral infection, we detected degradation intermediates of TCV RNA at higher levels in an Arabidopsis heso1 urt1 mutant, suggesting that uridylation participates in clearing viral RNA. Collectively, our work unveils an extreme diversity of uridylation patterns across phytoviruses and constitutes a valuable resource to further decipher pro- and antiviral roles of uridylation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Uridina/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Nucleotidiltransferases/metabolismo
4.
J Lipid Res ; 64(3): 100337, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716821

RESUMO

Liver function indicators are often impaired in patients with type 2 diabetes mellitus (T2DM), who present higher concentrations of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase than individuals without diabetes. However, the mechanism of liver injury in patients with T2DM has not been clearly elucidated. In this study, we performed a lipidomics analysis on the liver of T2DM mice, and we found that phosphatidylethanolamine (PE) levels were low in T2DM, along with an increase in diglyceride, which may be due to a decrease in the levels of phosphoethanolamine cytidylyltransferase (Pcyt2), thus likely affecting the de novo synthesis of PE. The phosphatidylserine decarboxylase pathway did not change significantly in the T2DM model, although both pathways are critical sources of PE. Supplementation with CDP-ethanolamine (CDP-etn) to increase the production of PE from the CDP-etn pathway reversed high glucose and FFA (HG&FFA)-induced mitochondrial damage including increased apoptosis, decreased ATP synthesis, decreased mitochondrial membrane potential, and increased reactive oxygen species, whereas supplementation with lysophosphatidylethanolamine, which can increase PE production in the phosphatidylserine decarboxylase pathway, did not. Additionally, we found that overexpression of PCYT2 significantly ameliorated ATP synthesis and abnormal mitochondrial morphology induced by HG&FFA. Finally, the BAX/Bcl-2/caspase3 apoptosis pathway was activated in hepatocytes of the T2DM model, which could also be reversed by CDP-etn supplements and PCYT2 overexpression. In summary, in the liver of T2DM mice, Pcyt2 reduction may lead to a decrease in the levels of PE, whereas CDP-etn supplementation and PCYT2 overexpression ameliorate partial mitochondrial function and apoptosis in HG&FFA-stimulated L02 cells.


Assuntos
Diabetes Mellitus Tipo 2 , Fosfatidiletanolaminas , Camundongos , Animais , Fosfatidiletanolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , RNA Nucleotidiltransferases/metabolismo , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Trifosfato de Adenosina/metabolismo
5.
Cells ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497000

RESUMO

The terminal nucleotidyltransferases TUT4 and TUT7 (TUT4/7) regulate miRNA and mRNA stability by 3' end uridylation. In humans, TUT4/7 polyuridylates both mRNA and pre-miRNA, leading to degradation by the U-specific exonuclease DIS3L2. We investigate the role of uridylation-dependent decay in maintaining the transcriptome by transcriptionally profiling TUT4/7 deleted cells. We found that while the disruption of TUT4/7 expression increases the abundance of a variety of miRNAs, the let-7 family of miRNAs is the most impacted. Eight let-7 family miRNAs were increased in abundance in TUT4/7 deleted cells, and many let-7 mRNA targets are decreased in abundance. The mRNAs with increased abundance in the deletion strain are potential direct targets of TUT4/7, with transcripts coding for proteins involved in cellular stress response, rRNA processing, ribonucleoprotein complex biogenesis, cell-cell signaling, and regulation of metabolic processes most affected in the TUT4/7 knockout cells. We found that TUT4/7 indirectly control oncogenic signaling via the miRNA let-7a, which regulates AKT phosphorylation status. Finally, we find that, similar to fission yeast, the disruption of uridylation-dependent decay leads to major rearrangements of the transcriptome and reduces cell proliferation and adhesion.


Assuntos
MicroRNAs , RNA Nucleotidiltransferases , Estabilidade de RNA , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Biochemistry ; 61(24): 2933-2939, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36484984

RESUMO

The RNA lariat debranching enzyme is the sole enzyme responsible for hydrolyzing the 2'-5' phosphodiester bond in RNA lariats produced by the spliceosome. Here, we test the ability of Dbr1 to hydrolyze branched RNAs (bRNAs) that contain a 2'-5'-phosphorothioate linkage, a modification commonly used to resist degradation. We attempted to cocrystallize a phosphorothioate-branched RNA (PS-bRNA) with wild-type Entamoeba histolytica Dbr1 (EhDbr1) but observed in-crystal hydrolysis of the phosphorothioate bond. The crystal structure revealed EhDbr1 in a product-bound state, with the hydrolyzed 2'-5' fragment of the PS-bRNA mimicking the binding mode of the native bRNA substrate. These findings suggest that product inhibition may contribute to the kinetic mechanism of Dbr1. We show that Dbr1 enzymes cleave phosphorothioate linkages at rates ∼10,000-fold more slowly than native phosphate linkages. This new product-bound crystal structure offers atomic details, which can aid inhibitor design. Dbr1 inhibitors could be therapeutic or investigative compounds for human diseases such as human immunodeficiency virus (HIV), amyotrophic lateral sclerosis (ALS), cancer, and viral encephalitis.


Assuntos
RNA Nucleotidiltransferases , RNA , Humanos , RNA/química , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Splicing de RNA , Fosfatos/metabolismo
7.
Nucleic Acids Res ; 50(18): 10614-10625, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36177876

RESUMO

In Arabidopsis, HESO1 and URT1 act cooperatively on unmethylated miRNA and mRNA uridylation to induce their degradation. Their collaboration significantly impacts RNA metabolism in plants. However, the molecular mechanism determining the functional difference and complementarity of these two enzymes remains unclear. We previously solved the three-dimensional structure of URT1 in the absence and presence of UTP. In this study, we further determined the structure of URT1 in complex with a 5'-AAAU-3' RNA stretch that mimics the post-catalytic state of the mRNA poly(A) tail after the addition of the first uridine. Structural analysis and enzymatic assays revealed that L527 and Y592 endow URT1 with a preference to interact with purine over pyrimidine at the -1 RNA binding position, thus controlling the optimal number of uridine added to the 3' extremity of poly(A) as two. In addition, we observed that a large-scale conformational rearrangement in URT1 occurs upon binding with RNA from an 'open' to a 'closed' state. Molecular dynamic simulation supports an open-closed conformational selection mechanism employed by URT1 to interact with RNA substrates and maintain distributive enzymatic activity. Based on the above results, a model regarding the catalytic cycle of URT1 is proposed to explain its di-uridylation activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Nucleotidiltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Purinas/metabolismo , RNA Mensageiro/metabolismo , Uridina Trifosfato/metabolismo
8.
Dev Biol ; 491: 43-55, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063869

RESUMO

Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Células Germinativas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , RNA/metabolismo , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(38): e2205842119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095196

RESUMO

RNA uridylation, catalyzed by terminal uridylyl transferases (TUTases), represents a conserved and widespread posttranscriptional RNA modification in eukaryotes that affects RNA metabolism. In plants, several TUTases, including HEN1 SUPPRESSOR 1 (HESO1) and UTP: RNA URIDYLYLTRANSFERASE (URT1), have been characterized through genetic and biochemical approaches. However, little is known about their physiological significance during plant development. Here, we show that HESO1 and URT1 act cooperatively with the cytoplasmic 3'-5' exoribonucleolytic machinery component SUPERKILLER 2 (SKI2) to regulate photosynthesis through RNA surveillance of the Calvin cycle gene TRANSKETOLASE 1 (TKL1) in Arabidopsis. Simultaneous dysfunction of HESO1, URT1, and SKI2 resulted in leaf etiolation and reduced photosynthetic efficiency. In addition, we detected massive illegitimate short interfering RNAs (siRNAs) from the TKL1 locus in heso1 urt1 ski2, accompanied by reduced TKL1/2 expression and attenuated TKL activities. Consequently, the metabolic analysis revealed that the abundance of many Calvin cycle intermediates is dramatically disturbed in heso1 urt1 ski2. Importantly, all these molecular and physiological defects were largely rescued by the loss-of-function mutation in RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), demonstrating illegitimate siRNA-mediated TKL silencing. Taken together, our results suggest that HESO1- and URT1-mediated RNA uridylation connects to the cytoplasmic RNA degradation pathway for RNA surveillance, which is crucial for TKL expression and photosynthesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fotossíntese , RNA Nucleotidiltransferases , Estabilidade de RNA , RNA Interferente Pequeno , Transcetolase , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nucleotidiltransferases/metabolismo , Fotossíntese/genética , RNA Helicases/metabolismo , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcetolase/genética , Transcetolase/metabolismo , Uridina/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(28): e2204511119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867748

RESUMO

Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown. Here, we show that ZCCHC14 and TENT4A/B are required for viral RNA synthesis following translation of the viral genome in infected cells. Cross-linking immunoprecipitation sequencing (CLIP-seq) experiments revealed that ZCCHC14 binds a small stem-loop in the HAV 5' untranslated RNA possessing a Smaug recognition-like pentaloop to which it recruits TENT4. TENT4 polymerases lengthen and stabilize the 3' poly(A) tails of some cellular and viral mRNAs, but the chemical inhibition of TENT4A/B with the dihydroquinolizinone RG7834 had no impact on the length of the HAV 3' poly(A) tail, stability of HAV RNA, or cap-independent translation of the viral genome. By contrast, RG7834 inhibited the incorporation of 5-ethynyl uridine into nascent HAV RNA, indicating that TENT4A/B function in viral RNA synthesis. Consistent with potent in vitro antiviral activity against HAV (IC50 6.11 nM), orally administered RG7834 completely blocked HAV infection in Ifnar1-/- mice, and sharply reduced serum alanine aminotransferase activities, hepatocyte apoptosis, and intrahepatic inflammatory cell infiltrates in mice with acute hepatitis A. These results reveal requirements for ZCCHC14-TENT4A/B in hepatovirus RNA synthesis, and suggest that TENT4A/B inhibitors may be useful for preventing or treating hepatitis A in humans.


Assuntos
Proteínas Cromossômicas não Histona , DNA Polimerase Dirigida por DNA , Vírus da Hepatite A , Hepatite A , Proteínas Intrinsicamente Desordenadas , RNA Nucleotidiltransferases , RNA Viral , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Hepatite A/tratamento farmacológico , Hepatite A/metabolismo , Hepatite A/virologia , Vírus da Hepatite A/efeitos dos fármacos , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Camundongos Mutantes , RNA Nucleotidiltransferases/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Receptor de Interferon alfa e beta/genética , Replicação Viral/efeitos dos fármacos
11.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743105

RESUMO

The dystrophin-glycoprotein complex connects the cytoskeleton with base membrane components such as laminin through unique O-glycans displayed on α-dystroglycan (α-DG). Genetic impairment of elongation of these glycans causes congenital muscular dystrophies. We previously identified that glycerol phosphate (GroP) can cap the core part of the α-DG O-glycans and terminate their further elongation. This study examined the possible roles of the GroP modification in cancer malignancy, focusing on colorectal cancer. We found that the GroP modification critically depends on PCYT2, which serves as cytidine 5'-diphosphate-glycerol (CDP-Gro) synthase. Furthermore, we identified a significant positive correlation between cancer progression and GroP modification, which also correlated positively with PCYT2 expression. Moreover, we demonstrate that GroP modification promotes the migration of cancer cells. Based on these findings, we propose that the GroP modification by PCYT2 disrupts the glycan-mediated cell adhesion to the extracellular matrix and thereby enhances cancer metastasis. Thus, the present study suggests the possibility of novel approaches for cancer treatment by targeting the PCYT2-mediated GroP modification.


Assuntos
Distroglicanas , Neoplasias , RNA Nucleotidiltransferases/metabolismo , Distroglicanas/genética , Distroglicanas/metabolismo , Glicerol/metabolismo , Glicerofosfatos , Humanos , Fosfatos/metabolismo , Polissacarídeos/metabolismo , Regulação para Cima
12.
RNA ; 28(7): 927-936, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459748

RESUMO

In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from Entamoeba histolytica uses combinations of Mn2+, Zn2+, and Fe2+ as enzymatic cofactors. Here, we examine the kinetic properties and metal dependence of the Dbr1 homolog from Saccharomyces cerevisiae (yDbr1). Elemental analysis measured stoichiometric quantities of Fe and Zn in yDbr1 purified following heterologous expression E. coli We analyzed the ability of Fe2+, Zn2+, and Mn2+ to reconstitute activity in metal-free apoenzyme. Purified yDbr1 was highly active, turning over substrate at 5.6 sec-1, and apo-yDbr1 reconstituted with Fe2+ was the most active species, turning over at 9.2 sec-1 We treated human lymphoblastoid cells with the iron-chelator deferoxamine and measured a twofold increase in cellular lariats. These data suggest that Fe is an important biological cofactor for Dbr1 enzymes.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Íntrons , Metais , RNA/química , RNA Nucleotidiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Technol Cancer Res Treat ; 21: 15330338221083105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35244467

RESUMO

Aims: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent malignancies with unfavorable clinical outcomes and limited therapeutic methods. As a key enzyme in RNA metabolism, debranching RNA Lariats 1 (DBR1) is involved in intron turnover and biogenesis of noncoding RNA. Although cancer cells often show disorder of nucleic acid metabolism, it is unclear whether DBR1 has any effect on the carcinogenesis and progression of ESCC. Methods: Here we detected DBR1 expression in 112 ESCC samples by immunohistochemistry and analyzed its correlation with clinical parameters and survival. Results: DBR1 is mainly located in the nucleus of ESCC tissue. And DBR1 was associated with several malignant clinical features in patients, including tumor location (χ2 = 9.687, P = .021), pathologic T stage (χ2 = 5.771, P = .016), lymph node metastasis (χ2 = 8.215, P = .004) and N classification (χ2 = 10.066, P = .018). Moreover, Kaplan-Meier analysis showed that ESCC patients harboring lower DBR1 expression had a worse prognosis in comparison with those with higher DBR1 expression (P = .005). Univariate and multivariate Cox proportional hazards regression analyses indicated that decreased DBR1 might act as an independent predictor of poor prognosis for ESCC patients. Conclusion: Abnormal RNA metabolism might play a critical role in promoting the progression of ESCC, and DBR1 may be a promising potential biomarker for predicting the prognosis of ESCC patients.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas do Esôfago , RNA Nucleotidiltransferases , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Modelos de Riscos Proporcionais , RNA , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo
14.
RNA ; 28(3): 353-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949722

RESUMO

The human terminal uridyl transferases TUT4 and TUT7 (TUT4/7) catalyze the additions of uridines at the 3' end of RNAs, including the precursors of the tumor suppressor miRNA let-7 upon recruitment by the oncoprotein LIN28A. As a consequence, let-7 family miRNAs are down-regulated. Disruption of this TUT4/7 activity inhibits tumorigenesis. Hence, targeting TUT4/7 could be a potential anticancer therapy. In this study, we investigate TUT4/7-mediated RNA regulation in two cancer cell lines by establishing catalytic knockout models. Upon TUT4/7 mutation, we observe a significant reduction in miRNA uridylation, which results in defects in cancer cell properties such as cell proliferation and migration. With the loss of TUT4/7-mediated miRNA uridylation, the uridylated miRNA variants are replaced by adenylated isomiRs. Changes in miRNA modification profiles are accompanied by deregulation of expression levels in specific cases. Unlike let-7s, most miRNAs do not depend on LIN28A for TUT4/7-mediated regulation. Additionally, we identify TUT4/7-regulated cell-type-specific miRNA clusters and deregulation in their corresponding mRNA targets. Expression levels of miR-200c-3p and miR-141-3p are regulated by TUT4/7 in a cancer cell-type-specific manner. Subsequently, BCL2, which is a well-established target of miR-200c is up-regulated. Therefore, TUT4/7 loss causes deregulation of miRNA-mRNA networks in a cell-type-specific manner. Understanding of the underlying biology of such cell-type-specific deregulation will be an important aspect of targeting TUT4/7 for potential cancer therapies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias/metabolismo , RNA Nucleotidiltransferases/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , MicroRNAs/genética , Neoplasias/genética , RNA Nucleotidiltransferases/genética , Processamento Pós-Transcricional do RNA
15.
J Nutr Biochem ; 100: 108910, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34801689

RESUMO

Isoflavone is a species of polyphenol found mainly in soy and soy products. Many studies have demonstrated its estrogen receptor (ER)-dependent action. Equol is an intestinal metabolite of a major soy isoflavone daidzein. We aimed to elucidate the mechanism for ER-independent actions of equol. Equol has been shown to inhibit proliferation of HeLa human cervical cancer cells and mouse melanoma B16 cells in an ER-independent manner. Using functional genetic screening, PAP associated domain containing 5 (PAPD5), which is a non-canonical poly(A) polymerase, was identified as an essential molecule in the ER-independent action. While peroral administration of equol inhibited tumor growth of control B16 cells subcutaneously inoculated in mice, it had little effect on the growth of PAPD5-ablated B16 cells. Intriguingly, equol progressed tumor growth of the PAPD5-ablated human breast cancer MCF-7 cells, which have high ERα expression. Equol has been found to induce polyadenylation of snoRNAs in a PAPD5-depdendent manner. Furthermore, peroral equol administration increased microRNA miR-320a expression in tumors. Together, these results suggest that equol may have a dual effect on ER-positive cancer cells, acting with, antiproliferative activity through PAPD5 and exhibiting proliferative activity via ERα and the former could be associated with miR-320a.


Assuntos
Proliferação de Células/efeitos dos fármacos , Equol/farmacologia , Melanoma Experimental/patologia , RNA Nucleotidiltransferases/metabolismo , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Células HeLa , Humanos , Isoflavonas/farmacologia , Células MCF-7 , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transplante de Neoplasias , RNA Nucleolar Pequeno/metabolismo
16.
PLoS One ; 16(11): e0258903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807934

RESUMO

Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3'-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo , RNA Nucleotidiltransferases/metabolismo , Trypanosoma brucei brucei/metabolismo , Diferenciação Celular , Genes Reporter , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento
17.
J Biochem ; 170(2): 183-194, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34255834

RESUMO

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface protein. Defective O-mannosyl glycan on α-DG is associated with muscular dystrophies and cancer. In the biosynthetic pathway of the O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP) transfer ribitol phosphate (RboP). Previously, we reported that FKTN and FKRP can also transfer glycerol phosphate (GroP) from CDP-glycerol (CDP-Gro) and showed the inhibitory effects of CDP-Gro on functional glycan synthesis by preventing glycan elongation in vitro. However, whether mammalian cells have CDP-Gro or associated synthetic machinery has not been elucidated. Therefore, the function of CDP-Gro in mammals is largely unknown. Here, we reveal that cultured human cells and mouse tissues contain CDP-Gro using liquid chromatography tandem-mass spectrometry (LC-MS/MS). By performing the enzyme activity assay of candidate recombinant proteins, we found that ethanolamine-phosphate cytidylyltransferase (PCYT2), the key enzyme in de novo phosphatidylethanolamine biosynthesis, has CDP-Gro synthetic activity from glycerol-3-phosphate (Gro3P) and CTP. In addition, knockdown of PCYT2 dramatically reduced cellular CDP-Gro. These results indicate that PCYT2 is a CDP-Gro synthase in mammals. Furthermore, we found that the expression of functionally glycosylated α-DG is increased by reducing PCYT2 expression. Our results suggest an important role for CDP-Gro in the regulation of α-DG function in mammals.


Assuntos
Distroglicanas/metabolismo , Açúcares de Nucleosídeo Difosfato/metabolismo , RNA Nucleotidiltransferases/metabolismo , Animais , Cromatografia Líquida/métodos , Cistina Difosfato/metabolismo , Glicerol/metabolismo , Glicosilação , Células HEK293 , Humanos , Masculino , Mamíferos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pentosiltransferases/metabolismo , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem/métodos
18.
J Virol ; 95(18): e0057421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34191584

RESUMO

Noncanonical poly(A) polymerases PAPD5 and PAPD7 (PAPD5/7) stabilize hepatitis B virus (HBV) RNA via the interaction with the viral posttranscriptional regulatory element (PRE), representing new antiviral targets to control HBV RNA metabolism, hepatitis B surface antigen (HBsAg) production, and viral replication. Inhibitors targeting these proteins are being developed as antiviral therapies; therefore, it is important to understand how PAPD5/7 coordinate to stabilize HBV RNA. Here, we utilized a potent small-molecule AB-452 as a chemical probe, along with genetic analyses to dissect the individual roles of PAPD5/7 in HBV RNA stability. AB-452 inhibits PAPD5/7 enzymatic activities and reduces HBsAg both in vitro (50% effective concentration [EC50] ranged from 1.4 to 6.8 nM) and in vivo by 0.94 log10. Our genetic studies demonstrate that the stem-loop alpha sequence within PRE is essential for both maintaining HBV poly(A) tail integrity and determining sensitivity toward the inhibitory effect of AB-452. Although neither single knockout (KO) of PAPD5 nor PAPD7 reduces HBsAg RNA and protein production, PAPD5 KO does impair poly(A) tail integrity and confers partial resistance to AB-452. In contrast, PAPD7 KO did not result in any measurable changes within the HBV poly(A) tails, but cells with both PAPD5 and PAPD7 KO show reduced HBsAg production and conferred complete resistance to AB-452 treatment. Our results indicate that PAPD5 plays a dominant role in stabilizing viral RNA by protecting the integrity of its poly(A) tail, while PAPD7 serves as a second line of protection. These findings inform PAPD5-targeted therapeutic strategies and open avenues for further investigating PAPD5/7 in HBV replication. IMPORTANCE Chronic hepatitis B affects more than 250 million patients and is a major public health concern worldwide. HBsAg plays a central role in maintaining HBV persistence, and as such, therapies that aim at reducing HBsAg through destabilizing or degrading HBV RNA have been extensively investigated. Besides directly degrading HBV transcripts through antisense oligonucleotides or RNA silencing technologies, small-molecule compounds targeting host factors such as the noncanonical poly(A) polymerase PAPD5 and PAPD7 have been reported to interfere with HBV RNA metabolism. Herein, our antiviral and genetic studies using relevant HBV infection and replication models further characterize the interplays between the cis element within the viral sequence and the trans elements from the host factors. PAPD5/7-targeting inhibitors, with oral bioavailability, thus represent an opportunity to reduce HBsAg through destabilizing HBV RNA.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Vírus da Hepatite B/genética , Hepatite B/virologia , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA , RNA Viral/química , Replicação Viral , Animais , Antivirais/farmacologia , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , DNA Polimerase Dirigida por DNA/genética , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Hepatite B/genética , Hepatite B/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Nucleotidiltransferases/antagonistas & inibidores , RNA Nucleotidiltransferases/genética , RNA Viral/genética
19.
Biochem Biophys Res Commun ; 549: 135-142, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33676181

RESUMO

A protein-RNA complex containing the RNA helicase CGH-1 and a germline specific RNA-binding protein CAR-1 is involved in various aspects of function in C. elegans. However, the structural basis for the assembly of this protein complex remains unclear. Here, we elucidate the molecular basis of the recognition of CGH-1 by CAR-1. Additionally, we found that the ATPase activity of CGH-1 is stimulated by NTL-1a MIF4G domain in vitro. Furthermore, we determined the structures of the two RecA-like domains of CGH-1 by X-ray crystallography at resolutions of 1.85 and 2.40 Å, respectively. Structural and biochemical approaches revealed a bipartite interface between CGH-1 RecA2 and the FDF-TFG motif of CAR-1. NMR and structure-based mutations in CGH-1 RecA2 or CAR-1 attenuated or disrupted CGH-1 binding to CAR-1, assessed by ITC and GST-pulldown in vitro. These findings provide insights into a conserved mechanism in the recognition of CGH-1 by CAR-1. Together, our data provide the missing physical links in understanding the assembly and function of CGH-1 and CAR-1 in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Aminoácidos/química , Animais , Sequência Conservada , Cristalografia por Raios X , Isótopos de Nitrogênio , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética
20.
Cell Rep ; 34(11): 108859, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730579

RESUMO

Hepatitis A virus (HAV) is a positive-sense RNA virus causing acute inflammation of the liver. Here, using a genome-scale CRISPR screen, we provide a comprehensive picture of the cellular factors that are exploited by HAV. We identify genes involved in sialic acid/ganglioside biosynthesis and members of the eukaryotic translation initiation factor complex, corroborating their putative roles for HAV. Additionally, we uncover all components of the cellular machinery for UFMylation, a ubiquitin-like protein modification. We show that HAV translation specifically depends on UFM1 conjugation of the ribosomal protein RPL26. Furthermore, we find that components related to the yeast Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex are required for viral translation independent of controlling viral poly(A) tails or RNA stability. Finally, we demonstrate that pharmacological inhibition of the TRAMP-like complex decreases HAV replication in hepatocyte cells and human liver organoids, thus providing a strategy for host-directed therapy of HAV infection.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Humano , Vírus da Hepatite A/fisiologia , Hepatite/virologia , Interações Hospedeiro-Patógeno , Complexos Multiproteicos/metabolismo , Proteínas/metabolismo , Ubiquitinação , Antivirais/metabolismo , Catálise , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Hepatite/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/virologia , Poliadenilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Viral/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...